Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. State $T$ for true and $F$ for false.
$\left(i\right)$ If $x < -5$ and $x < -2$, then $x \in \left(-\infty , \,-5\right)$
$\left(ii\right)$ If $\left|x\right| \le 4$, then $x \in \left[-4,\,4\right]$
$\left(iii\right)$ Graph of $x \ge 0$ is
image
$(iv)$ If $x y > 0$, then $ x > 0$ and $y < 0$
(i) (ii) (iii) (iv)
(a) $T$ $T$ $T$ $F$
(b) $T$ $T$ $F$ $T$
(c) $T$ $F$ $T$ $F$
(d) $F$ $T$ $T$ $T$

Linear Inequalities

Solution:

$(i)$ True
If $x < -5$, then $x \in \left(-\infty, \,-5\right)\quad...\left(1\right)$
and $x < - 2$, then $x \in \left(-\infty, \,- 2\right)\quad...\left(2\right)$
From $\left(1\right)$ and $\left(2\right)$, we get $x \in \left(-\infty , \,-5\right)$
$\left(ii\right)$ True
If $|x| \le 4$, then $-4 \le x \le 4$
$\Rightarrow \quad x \in \left[-4,\,4\right]$
$\left(iii\right)$ True
The given graph represents $x \ge 0$.
$\left(iv\right)$ False
If $xy > 0$, then either $x > 0$, $y > 0$ or $x < 0$, $y < 0$.