Q.
State $T$ for true and $F$ for false.
(i) $\displaystyle \lim_{x \to 1/2}$ $\left(\frac{8x-3}{2x-1}-\frac{4x^{2}+1}{4x^{2}-1}\right)=\frac{7}{2}$
(ii) $\displaystyle \lim_{x \to 0}$ $\frac{sin \,x -2 \,sin \,3x +sin\, 5x}{x}=1$
(iii) The derivative of $\frac{x^{2}\,cos\left(\frac{\pi}{4}\right)}{sin\,x}$ is
$x\,cos \frac{\pi}{4}\left[\frac{2\,sin\,x-x\,cos\,x}{sin^{2}\,x}\right]$.
(iv)The derivative of $5 \,sin\, x - 6 \,cos\, x + 7$ is $5 \,cos\,x - 7\, sin\,x$.
(i)$\quad$
(ii)$\quad$
(iii)$\quad$
(iv)
(a)$\quad$
$F$
$T$
$F$
$T$
(b)
$T$
$F$
$T$
$F$
(c)
$T$
$T$
$F$
$F$
(d)
$F$
$F$
$T$
$T$
(i)$\quad$ | (ii)$\quad$ | (iii)$\quad$ | (iv) | |
---|---|---|---|---|
(a)$\quad$ | $F$ | $T$ | $F$ | $T$ |
(b) | $T$ | $F$ | $T$ | $F$ |
(c) | $T$ | $T$ | $F$ | $F$ |
(d) | $F$ | $F$ | $T$ | $T$ |
Limits and Derivatives
Solution: