Thank you for reporting, we will resolve it shortly
Q.
Solve the following system of equations :
$3 x - y + z=5$, $2x-2y + 3z = 7$, $x + y - z = - 1$
Determinants
Solution:
The given system of equations can be written as $AX = B$
where $A =\left[\begin{matrix}3&-1&1\\ 2&-2&3\\ 1&1&-1\end{matrix}\right]$, $X=\left[\begin{matrix}x\\ y\\ z\end{matrix}\right]$ and $B =\left[\begin{matrix}5\\ 7\\ -1\end{matrix}\right]$
Now, $\left|A\right|=3\left(2-3\right)-\left(-1\right)\left(-2-3\right)+1\left(2+2\right)=-4 \ne0$
$\Rightarrow \quad A^{-1}$ exists and so the given system has a unique solution $X=A^{-1}B$
Now, $adj A =\left[\begin{matrix}-1&0&-1\\ 5&-4&-7\\ 4&-4&-4\end{matrix}\right]$
$\therefore \quad$ $A^{-1}=\frac{1}{\left|A\right|} adj \,A=-\frac{1}{4}\left[\begin{matrix}-1&0&-1\\ 5&-4&-7\\ 4&-4&-4\end{matrix}\right]$