Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Solution set of the inequality $\frac{1}{2^{x}-1} > \frac{1}{1-2^{x-1}}$ is

Linear Inequalities

Solution:

Put $2^x = t$. Then $t > 0$. Now, given inequality becomes $\frac{1}{t-1} > \frac{2}{2-t} \Rightarrow \frac{1}{t-1}-\frac{2}{2-t} >0 \Rightarrow \frac{2-t-2t+2}{\left(t-1\right)\left(2-t\right)} > 0$
$\Rightarrow \frac{4-3t}{\left(t-1\right)\left(2-t\right)} >0 \Rightarrow \frac{\left(t-\frac{4}{3}\right)}{\left(t-1\right)\left(t-2\right)} >0.$
image
From sign scheme we get
$1 < t < 4/3$ or $t > 2.$
$\Rightarrow 1 < 2^{x} < 4/3$ or $2^{x} > 2$
$\Rightarrow x \in\left(0, log_{2}\left(4/3\right)\right)\cup\left(1, \infty\right)$