Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Solution set of $\left[\right.sin^{- 1} x \left]\right. > \left[\right. cos^{- 1} ⁡ x \left]\right. ,$ where [.] denotes the greatest integer function, is

NTA AbhyasNTA Abhyas 2020Inverse Trigonometric Functions

Solution:

$\because\left[\sin ^{-1} x\right]>\left[\cos ^{-1} x\right]$ $\Rightarrow \quad x>0$
Here, $\left.[\cos ^{-1} x\right]=\left\{\begin{array}{ll}0, & x \in(\cos 1,1] \\ 1, & x \in(0, \cos 1]\end{array}\right. \\ \text { and }\left[\sin ^{-1} x\right]=\left\{\begin{array}{ll}0, & x \in(0, \sin 1) \\ 1, & x \in[\sin 1,1]\end{array}\right. \\ \therefore x \in[\sin 1,1]$