Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Solution of the differential equation
$tany\, sec^2x\, dx + tan \,x \,sec^2ydy = 0$ is

Differential Equations

Solution:

$tan\,y\,sec^{2}xdx+tanx\,sec^{2}ydy=0$
$\Rightarrow \frac{sec^{2}\,xdx}{tan\,x}=-\frac{sec^{2}\,ydy}{tan\,y}$
On integration, we get $log\, tanx = - log \,tany + log\, k$
$\Rightarrow log \left(tan\,x\cdot tan\,y\right) = log\, k$
$\Rightarrow tanx\cdot tany=k$