Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Solution of $\frac{d y}{d x}=\frac{x \log x^{2}+x}{\sin y+y \cos y}$ is

WBJEEWBJEE 2007

Solution:

Given equation is $\frac{d y}{d x}=\frac{x \log x^{2}+x}{\sin y+y \cos y}$
$\Rightarrow (\sin y+y \cos y) d y=\left(x \log x^{2}+x\right) d x$
On integrating both sides, we get
$\int(\sin y+y \cos y) d y=\int\left(x \log x^{2}+x\right) d x$
$\Rightarrow -\cos y+y \sin y+\cos y=\frac{x^{2}}{2} \log x^{2}-\int \frac{x^{2}}{2} \cdot \frac{1}{x^{2}} 2 x \,d x+\int x d x+C$
$\Rightarrow y \sin y=\frac{x^{2}}{2} \cdot 2 \log x-\int x\, d x+\int x \,d x+C$
$\Rightarrow y \sin y=x^{2} \log x+C$