Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Chemistry
Solubility product (Ksp) of saturated PbCl2 in water is 1.8 × 10-4 mol3 dm-9. What is the concentration of Pb2+ in the solution?
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. Solubility product $(K_{sp}) $ of saturated $PbCl_2$ in water is $1.8 \times 10^{-4} \, mol^3 \, dm^{-9}$. What is the concentration of $Pb^{2+}$ in the solution?
KEAM
KEAM 2017
Equilibrium
A
$(0.45 \times 10^{-4} )^{1/3} \, mol \, dm^{-3}$
50%
B
$(1.8 \times 10^{-4} )^{1/3} \, mol \, dm^{-3}$
22%
C
$(0.9 \times 10^{-4} )^{1/3} \, mol \, dm^{-3}$
6%
D
$(2.0 \times 10^{-4} )^{1/3} \, mol \, dm^{-3}$
0%
E
$(2.45 \times 10^{-4} )^{1/3} \, mol \, dm^{-3}$
0%
Solution:
For the reaction of the $A B_{2}$
i.e. $\left( PbCl _{2}\right)$
$K_{SP} =4 S^{3}$
or, $S =\left[\frac{K_{S P}}{4}\right]^{1 / 3} $
Given, $K_{SP}=1.8 \times 10^{-4}\, mol ^{3} \,dm ^{-9}$
$\therefore $ Solubility of $Pb ^{+2}$ ions will be
$\therefore S=\left[\frac{1.8 \times 10^{-4}}{4}\right]^{\frac{1}{3}} $
$=\left[0.45 \times 10^{-4}\right]^{\frac{1}{3}} mol.\, dm ^{-3}$