Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Small identical balls with equal charges are fixed at vertices of regular polygon with side $a$. At a certain instant, one of the balls is released & a sufficiently long time interval later, the ball adjacent to the first released ball is freed. The kinetic energies of the released balls are found to differ by $K$ at a sufficiently long distance from the polygon. Determine the charge $q$ of each ball. If it is $\frac{1}{a} \times 10^{-4} C$. Find $a .( k =10$ Joule, side length $=1 \,m )$

Electrostatic Potential and Capacitance

Solution:

image
$KE _{1}:$ Kinetic energy of $1^{\text {st }}$
$KE _{2}:$ Kinetic energy of $2^{\text {nd }}$
$K.E_1$
$=\frac{q^{2}}{4 \pi \varepsilon_{0} r_{12}}+\frac{q^{2}}{4 \pi \varepsilon_{0} r_{13}}+\ldots+\frac{q^{2}}{4 \pi \varepsilon_{0} r_{1 n}}$
$K.E_2$
$=\frac{ q ^{2}}{4 \pi \varepsilon_{0} r _{22}}+\frac{ q ^{2}}{4 \pi \varepsilon_{0} r _{23}}+\ldots .+\frac{ q ^{2}}{4 \pi \varepsilon_{0} r _{2 n }}$
$=\frac{ q ^{2}}{4 \pi \varepsilon_{0} r _{1 n }}+\frac{ q ^{2}}{4 \pi \varepsilon_{0} r _{1, n -1}}+\ldots+\frac{ q ^{2}}{4 \pi \varepsilon_{0} r _{13}}$
$K = KE _{1}- KE _{2}=\frac{ q ^{2}}{4 \pi \varepsilon_{0} r _{1 \alpha}}=\frac{ q ^{2}}{4 \pi \varepsilon_{0} a }$
$q=\sqrt{4 \pi \varepsilon_{0} a k}$