Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Slope of Normal to the curve $y=x^2 - \frac {1}{x^2}$ at $(-1,0)$ is

KCETKCET 2015Application of Derivatives

Solution:

We have, $\quad y=x^{2}-\frac{1}{x^{2}}$
$\Rightarrow \frac{dy}{dx}=2x+\frac{2}{x^{3}}$
On putting x = -1, we get
$ \frac{dy}{dx}=-2-2=-4$
$\therefore $ Slope of normal $= \frac{-1}{\left(\frac{dy}{dx}\right)}=\frac{-1}{-4}=\frac{1}{4}$