Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $\sin h ^{-1} 2+\cosh ^{-1} 2-\tanh ^{-1} \frac{2}{3}+\text{coth}^{-1}(-2)=$

TS EAMCET 2018

Solution:

We have,
$\sinh ^{-1}(2)+\cosh ^{-1}(2)-\tanh ^{-1}\left(\frac{2}{3}\right)+\cot h ^{-1}(-2)$
$=\ln \left(2+\sqrt{2^{2}+1}\right)+\ln \left(2+\sqrt{2^{2}-1}\right)$
$-\frac{1}{2} \ln \left(\frac{1+2 / 3}{1-2 / 3}\right)+\frac{1}{2} \ln \left(\frac{-2+1}{-2-1}\right)$
$=\ln (2+\sqrt{5})+\ln (2+\sqrt{3})-\frac{1}{2} \ln 5+\frac{1}{2} \ln \frac{1}{3}$
$=\ln \left[\frac{(2+\sqrt{5})(2+\sqrt{3})(\sqrt{3})}{\sqrt{5}}\right]$
$\left[\because \sinh ^{-1} x=\ln \left(x+\sqrt{x^{2}+1}\right),\right.$,
$\cosh ^{-1} x=\ln \left(x+\sqrt{x^{2}-1}\right), \tanh ^{-1} x=\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right)$,
$\left.\text{coth}^{-1} x=\frac{1}{2} \ln \left(\frac{x+1}{x-1}\right)\right]$