Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $\begin{vmatrix}\sin^{2}x&\cos^{2}x&1\\ \cos^{2}x&\sin^{2}x&1\\ -10&12&2\end{vmatrix} $ is equal to:

Determinants

Solution:

Let $A = \begin{vmatrix}\sin^{2}x&\cos^{2}x&1\\ \cos^{2}x&\sin^{2}x&1\\ -10&12&2\end{vmatrix} $
Applying $C_{1} \to C_{1} +C_{2}, $ we get
$ A =\begin{vmatrix}\sin^{2}x+\cos^{2}x&\cos^{2}x&1\\ \cos^{2}x + \sin^{2}x&\sin^{2}x&1\\ -10+12&12&2\end{vmatrix}$
$ = \begin{vmatrix}1&\cos^{2}x&1\\ 1&\sin^{2}x&1\\ 2&12&2\end{vmatrix} $
Since, two columns are identical
$\therefore \ A = 0 $