Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
sin 12° ⋅ sin 24° ⋅ sin 48° ⋅ sin 84°=
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. $\sin 12^{\circ} \cdot \sin 24^{\circ} \cdot \sin 48^{\circ} \cdot \sin 84^{\circ}=$
KCET
KCET 2022
A
$1 / 64$
B
$1 / 16$
C
$3 / 16$
D
$5 / 32$
Solution:
$\sin 12^{\circ} \cdot \sin 24^{\circ} \cdot \sin 48^{\circ} \cdot \sin 84^{\circ}$
$=\frac{1}{\sin 72^{\circ} \cdot \sin 36^{\circ}}\left(\sin 12^{\circ} \cdot \sin 72^{\circ} \cdot \sin 48^{\circ}\right) \cdot\left(\sin 24^{\circ} \cdot \sin 36^{\circ} \cdot \sin 84^{\circ}\right) $
$=\frac{1}{\sin 72^{\circ} \cdot \sin 36^{\circ}} \cdot \frac{1}{4}\left(\sin 3\left(12^{\circ}\right)\right) \cdot \frac{1}{4} \cdot\left(\sin 3\left(24^{\circ}\right)\right)=\frac{1}{16}$
( Note $ \sin \theta \cdot \sin \left(60^{\circ}+\theta\right) \cdot \sin \left(60^{\circ}-\theta\right)=\frac{1}{4} \cdot \sin 3 \theta$ )