Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $\left(\sin ^{-1} x\right)^2+\left(\sin ^{-1} y\right)^2+2\left(\sin ^{-1} x\right)\left(\sin ^{-1} y\right)=\pi^2$, then $x^2+y^2$ is equal to -

Inverse Trigonometric Functions

Solution:

$\left(\sin ^{-1} x+\sin ^{-1} y\right)^2=\pi^2$
$\Rightarrow \sin ^{-1} x+\sin ^{-1} y=\pm \pi$
$\Rightarrow \sin ^{-1} x=\sin ^{-1} y=\frac{\pi}{2}$
or $\sin ^{-1} x=\sin ^{-1} y=-\frac{\pi}{2}$
$\Rightarrow x^2+y^2=2$.