Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $sin^{-1}\left(sin\,5\right)>x^{2}-4x$ holds if

Inverse Trigonometric Functions

Solution:

$\frac{3\pi}{2} < 5 < \frac{5\pi}{2}$
$\Rightarrow sin^{-1}\left(sin\,5\right)=5-2\pi$
Given $sin^{-1}\left(sin\,5\right)>x^{2}-4x$
$\Rightarrow x^{2}-4x+4<9-2\pi$
$\Rightarrow \left(x-2\right)^{2}<9-2\pi$
$\Rightarrow -\sqrt{9-2\pi} < x-2 < \sqrt{9-2\pi}$
$\Rightarrow 2-\sqrt{9-2\pi} < x < 2+\sqrt{9-2\pi}$