Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Shortest distance between the lines $\frac{ x -1}{2}=\frac{ y +8}{-7}=\frac{ z -4}{5}$ and $\frac{ x -1}{2}=\frac{ y -2}{1}=\frac{ z -6}{-3}$ is

JEE MainJEE Main 2023Three Dimensional Geometry

Solution:

$ \frac{x-1}{2}=\frac{y+8}{-7}=\frac{z-4}{5} \,\,\,\,\vec{ a }=\hat{ i }-8 \hat{ j }+4 \hat{ k } $
$ \frac{ x -1}{2}=\frac{ y -2}{1}=\frac{ z -6}{-3} \,\,\,\,\vec{ b }=\hat{ i }+2 \hat{ j }+6 \hat{ k } $
$ \vec{ p }=2 \hat{ i }-7 \hat{ j }+5 \hat{ k }, \vec{ q }=2 \hat{ i }+\hat{ j }-3 \hat{ k } $
$ \vec{ p } \times \vec{ q }=\begin{vmatrix}\hat{ i } & \hat{ j } & \hat{ k } \\ 2 & -7 & 5 \\ 2 & 1 & -3\end{vmatrix} $
$ =\hat{ i }(16)-\hat{ j }(-16)+\hat{ k }(16) $
$ =16(\hat{ i }+\hat{ j }+\hat{ k }) $
$ d =\left|\frac{( a - b ) \cdot(\vec{ p } \times \vec{ q })}{|\vec{ p } \times \vec{ q }|}\right|=\left|\frac{(-10 \hat{ j }-2 \hat{ k }) \cdot 16(\hat{ i }+\hat{ j }+\hat{ k }) \mid}{16 \sqrt{3}}\right| $
$=\left|\frac{-12}{\sqrt{3}}\right|=4 \sqrt{3}$