Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Physics
Resistance of a wire at 20° C is 20 Ω and at 500° C is 60 Ω. At what temperature its resistance is 25 Ω ?
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. Resistance of a wire at $20^{\circ} C$ is $20 \Omega$ and at $500^{\circ} C$ is $60 \Omega$. At what temperature its resistance is $25 \Omega$ ?
NTA Abhyas
NTA Abhyas 2022
A
$160^{^\circ }C$
B
$250^{^\circ }C$
C
$100^{^\circ }C$
D
$80^{^\circ }C$
Solution:
Here, $R_{20}=20, \, R_{500}=60\Omega,R_{t}=25\Omega, \, $
$\because \, R_{t}=R_{0}\left(1 + \alpha t\right)$ (where $R_{0}=$ Resistance at $0^{\text{o}}\text{C}$ )
Where $\alpha $ is the temperature coefficient of resistance.
$\therefore \, \, \, R_{20}=R_{0}\left(1 + \alpha \times 20\right) \, $
$or \, 20=R_{0}\left(1 + \alpha \times 20\right) \, \, \, ..\left(i\right)$
$R_{500}=R_{0}\left(1 + \alpha \times 500\right)$
$or \, \, \, 60=R_{0}\left(1 + \alpha \times 500\right) \, \, \ldots \left(i i\right)$
Dividing Eq. (ii) by Eq. (i), we get
$\frac{60}{20}=\frac{1 + \alpha \times 500}{1 + \alpha \times 20}$
$or \, 3+60\alpha =1+500\alpha $
$or \, \alpha =\frac{2}{440}= \frac{1}{220} .^{\text{o}} \text{C}^{- 1}$
Again, $R_{20}=R_{0}\left(1 + \alpha \times 20\right)$
$or \, \, 20=R_{0}\left(1 + \frac{1}{220} \times 20\right)\ldots \left(\right.iii\left.\right)$
$ \, \, \, R_{t}=R_{0}\left(1 + \alpha t\right)$
$ \, \, \, 25=R_{0}\left(1 + \frac{1}{220} \times t\right) \, ..\left(i v\right)$
Dividing Eq. (iv) by Eq (iii), we get
$\frac{25}{20}=\frac{\left(1 + \frac{1}{220} \times t\right)}{\left(1 + \frac{1}{220} \times 20\right)}\Longrightarrow 4+\frac{4 t}{220}=5+\frac{100}{220}$
$or \, t=80^\circ C$