Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q.
$Li(s) \to Li(g)$ 161
$Li(g) \to Li^{+}(g)$ 520
$\frac{1}{2} F_2 (g) \to F(g)$ 77
$F(g) + e^{-} \to F-(g)$ (Electron gain enthalpy)
$Li^{+} (g) + F^{-}(g) \to Li F(s)$ -1047
$Li(s) + \frac{1}{2} F_2(g) \to LiF(s)$ -617

Based on data provided, the value of electron gain enthalpy of fluorine would be :

BITSATBITSAT 2016

Solution:

Applying Hess's Law
$\Delta_{f} H^{\circ}=\Delta_{\text {sub }} H+\frac{1}{2} \Delta_{\text {diss }} H+I . E+E . A+\Delta_{\text {lattice }} H$
$-617=161+520+77+$ E.A. $+(-1047)$
E. $A .=-617+289=-328 \,kJ \,mol ^{-1}$
$\therefore $ electron affinity of fluorine $=-328\, kJ\, mol ^{-1}$