Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Ratio of the total volume of $b c c$ to simple cubic structure is

The Solid State

Solution:

Volume of unit cell $=a^{3}$

For $b c c, r=\frac{\sqrt{3}}{4} a$ or $a=\frac{4 r}{\sqrt{3}}$

For simple cubic, $r=\frac{a}{2}$ or $a=2 r$

Thus volume of simple cubic unit cell $=(2 r)^{3}=8 r^{3}$

$\frac{\text { Volume of } b c c \text { unit cell }}{\text { Volume of simple cubic }}=\frac{64 / 3 \sqrt{3} r^{3}}{8 r^{3}}=\frac{64}{8 \times 3 \sqrt{3}}=\frac{8}{3 \sqrt{3}}$