Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Chemistry
Radius of water molecule is (assuming it spherical)
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. Radius of water molecule is (assuming it spherical)
Some Basic Concepts of Chemistry
A
$19.27 \,nm$
B
$19.27 \mathring{A}$
C
$192.7 \,pm$
D
$19.27\, \mu m$
Solution:
Density of water molecule $=1 \, g / mL$
$1 \, g =1 \, mL$
Thus, $\frac{1}{18} mol =1 \, mL$
$\frac{1}{18} \times 6.02 \times 10^{23}$ molecules $=1 \, mL$
Thus, volume of $1$ molecule $=\frac{18}{6.02 \times 10^{23}}$
$=3 \times 10^{-23} mL$
Volume of one spherical molecule $=\frac{4}{3} \pi r^3$
$\frac{4}{3} \pi r^3=3 \times 10^{-23} cm ^3$
$\therefore r^3=\frac{3 \times 3 \times 10^{-23}}{4 \pi} cm ^3$
$r^3=7.162 \times 10^{-23} cm ^3$
$r=1.927 \times 10^{-8} cm$
$=1.927 \times 10^{-10} m$
$=1.927 \mathring{A}$
$=\frac{1.927 \times 10 \times 10^{-10}}{10} m$
$=0.1927\, nm$
$=\frac{1.927 \times 100 \times 10^{-10}}{100} m$
$=192.7 \times 10^{-12} m =192.7\, pm$