Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Prove, by vector methods or otherwise, that the point of intersection of the diagonals of a trapezium lies on the line passing through the mid-points of the parallel sides. (you may assume that the trapezium is not a parallelogram).

IIT JEEIIT JEE 1998Vector Algebra

Solution:

Let $O$ be the origin of reference. Let the position vectors of $A$ and $B$ be $\vec{a}$ and $\vec{b}$ respectively.
image
Since, $B C \| O A, \overrightarrow{ B C }=\alpha \overrightarrow{ O A }=\alpha \overrightarrow{ a }$ for some constant $\alpha$,
Equation of $O C$ is $\overrightarrow{ r }=t(\overrightarrow{ b }+\alpha \overrightarrow{ a })$ and
equation of $A B$ is $\overrightarrow{ r }=\overrightarrow{ a }+\lambda(\overrightarrow{ b }-\overrightarrow{ a })$
Let $P$ be the point of intersection of $O C$ and $A B$. Then, at point $P, t(\overrightarrow{ b }+\alpha \overrightarrow{ a })=\overrightarrow{ a }+\lambda(\overrightarrow{ b }-\overrightarrow{ a })$ for some values of $t$ and $\lambda$.
$\Rightarrow (t \alpha-1+\lambda) \overrightarrow{ a }=(\lambda-t) \overrightarrow{ b }
$
Since, $\overrightarrow{ a }$ and $\overrightarrow{ b }$ are non-parallel vectors, we must have
$ t \alpha-1+\lambda =0 $ and $ \lambda=t $
$\Rightarrow t =1 /(\alpha+1)$
Thus, position vector of $P$ is
$\overrightarrow{ r _{1}}=\frac{1}{\alpha+1}(\vec{b}+\alpha \overrightarrow{ a })$
Equation of $M N$ is
$\overrightarrow{ r }=\frac{1}{2} \overrightarrow{ a }+k\left[\overrightarrow{ b }+\frac{1}{2}(\alpha-1) \overrightarrow{ a }\right] .....$(i)
For $k=1 /(\alpha+1)\left\{\right.$ which is the coefficient of $\overrightarrow{ b }$ in $\left.\overrightarrow{ r _{1}}\right\}$, we get
$\overrightarrow{ r } =\frac{1}{2} \overrightarrow{ a }+\frac{1}{\alpha+1}\left[\overrightarrow{ b }+\frac{1}{2}(\alpha-1) \overrightarrow{ a }\right] $
$=\frac{1}{(\alpha+1)} \overrightarrow{ b }+\frac{1}{2}(\alpha-1) \cdot \frac{1}{\alpha+1} \overrightarrow{ a }+\frac{1}{2} \overrightarrow{ a } $
$=\frac{1}{(\alpha+1)} \overrightarrow{ b }+\frac{1}{2(\alpha+1)}(\alpha-1+\alpha+1) \overrightarrow{ a } $
$=\frac{1}{(\alpha+1)}(\overrightarrow{ b }+\alpha \overrightarrow{ a })=\overrightarrow{ r }_{1}$
$\Rightarrow P$ lies on $M N$.