Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Pressure gradient has the same dimensions as that of

Physical World, Units and Measurements

Solution:

Pressure gradient = $ \frac{ \triangle p }{ \triangle x } = \frac{ N / m^2 }{ m } $
$ \therefore \, Dimensions \, of \bigg( \frac{ \triangle p }{ \triangle x }\bigg) = \frac{ [ MLT^{ - 2} ] / [ L^2 ] }{ [ L ] } $
= $ [ ML^{ - 2} T^{ - 2} ] $
Dimension of velocity gradient
= $ \bigg[- \frac{ \triangle v }{ \triangle x }\bigg] = \frac{ m / s}{ m } = \frac{ [ LT^{ - 1} ] }{ [ l ] } $
= $ [ M^0 L^0 T^{ - 1 } ] $
Dimensions of potential gradient
= $ \bigg(- \frac{ \triangle V }{ \triangle x }\bigg) = \frac{ \triangle W / Q }{ \triangle x } $
= $ \frac{ [ MLT^{ - 2} ] [ L ] }{ [ AT ] [ L ] } $
= $ [ MLT^{ - 3} A^{ - 1} ] $b
Energy gradient = $ \frac{ \triangle E }{ \triangle x } = \frac{ Nm }{ m } $
$ \therefore $ Dimensions of $\bigg( \frac{ \triangle p }{ \triangle x }\bigg) = \frac{ [ MLT^{ - 2} ] / [ L] }{ [ L ] } $
= $ [ MLT^{ - 2} ] $
As observed from above results, we see that none of the dimensions are same as of pressure gradient.