Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Power applied to a particle varies with time as $P=\left(\right.3t^{2}-2t+1\left.\right)$ watt, where $t$ is in second. The change in its kinetic energy between $t=2 \, s$ and $t=4 \, s$ is

NTA AbhyasNTA Abhyas 2020Work, Energy and Power

Solution:

$P=3t^{2}-2t+1=\frac{d E}{d t}$
$\therefore \, dE=\left(\right.3t^{2}-2t+1\left.\right)dt$
$E=\displaystyle \int _{t = 2 s}^{t = 4 s} \left(\right. 3 t^{2} - 2 t + 1 \left.\right) d t$
$=\left[\frac{3 t^{3}}{3} - \frac{2 t^{2}}{2} + t\right]_{t = 2 s}^{t = 4 s}$
$=\left[\right.\left(4^{3} - 2^{3}\right)-\left(4^{2} - 2^{2}\right)+\left(\right.4-2\left.\right)\left]\right.$
$E=56-12+2=46 \, J$