Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Perpendicular are drawn from points on the line (x+2/2) = (y+1/-1) = (z/3) to the plane x+ y + z = 3. The feet of perpendiculars lie on the line
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. Perpendicular are drawn from points on the line $\frac{x+2}{2} = \frac{y+1}{-1} = \frac{z}{3} $ to the plane $x+ y + z = 3$. The feet of perpendiculars lie on the line
JEE Advanced
JEE Advanced 2013
Three Dimensional Geometry
A
$\frac{x}{5}=\frac{y-1}{8}=\frac{z-2}{-13}$
5%
B
$\frac{x}{2}=\frac{y-1}{3}=\frac{z-2}{-5}$
17%
C
$\frac{x}{4}=\frac{y-1}{3}=\frac{z-2}{-7}$
14%
D
$\frac{x}{2}=\frac{y-1}{-7}=\frac{z-2}{5}$
64%
Solution:
PLAN To find the foot of perpendiculars and find its locus.
Formula used
Foot of perpendicular from $(x_1,y_1,z_1)$ to
$ax + by + cz +d = 0$ be $(x_2 , y_2 ,z_2)$ , then
$\frac{x_{2}-x_{1}}{a}=\frac{y_{2}-y_{1}}{b}=\frac{z_{2}-z_{1}}{c}$
=$\frac{\left(ax_{1}+by_{1}+cz_{1}+d\right)}{a^{2 }+b^{2}+c^{2}}$
Any point on $\frac{x+2}{2} = \frac{y + 1}{-1} = \frac{z}{3} = \lambda$
$\Rightarrow x = 2 \lambda - 2 , y = - \lambda -1 , z = 3 \lambda$
Let foot of perpendicular from $(2 \lambda - 2 , - \lambda - 1 , 3 \lambda)$
to $x + y+ z = 3 $ be $(x_2,y_2 ,z_2)$.
$\therefore \frac{x_{2}-\left(2\lambda-2\right)}{1}=\frac{y_{2}-\left(-\lambda-1\right)}{1}=\frac{z_{2}-\left(3\lambda\right)}{1}$
= $- \frac{\left(2\lambda-2-1+2\lambda-1+3\lambda-3\right)}{1+1+1}$
$\Rightarrow x_2 - 2\lambda +2 = y_2 + \lambda +1 = z_2 - 3\lambda = 2 - \frac{4\lambda}{3}$
$\therefore x_2 = \frac{2\lambda}{3} , y_2 = 1 - \frac{7\lambda}{3} , z_2 = 2+ \frac{5\lambda}{3}$
$\Rightarrow \lambda = \frac{x_2 - 0}{2/3} = \frac{y_2 - 1}{-7/3} = \frac{z_2 - 2}{5/3} $
Hence, foot of perpendicular lie on
$\frac{x }{2/3} = \frac{y -1}{-7 /3} = \frac{z-2}{5/3}\Rightarrow \frac{x}{2}=\frac{y-1}{-7} = \frac{z-2}{5}$