Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. PARAGRAPH 2
Let $F _{1}\left( x _{1}, 0\right)$ and $F _{2}\left( x _{2}, 0\right)$, for $x _{1}<0$ and $x _{2}>0$, be the foci of the ellipse $\frac{ x ^{2}}{9}+\frac{ y ^{2}}{8}=1 .$ Suppose a parabola having vertex at the origin and focus at $F_{2}$ intersects the ellipse at point $M$ in the first quadrant and at point $N$ in the fourth quadrant.

The orthocentre of the triangle $F _{1} MN$ is

JEE AdvancedJEE Advanced 2016

Solution:

image
$\frac{x^{2}}{9} +\frac{y^{2}}{8}=1 $
foci $=(\pm a e, 0) $
$=\left(\pm 3 \sqrt{1-\frac{8}{9}}, 0\right)$
$=(\pm 1,0)$
Equation of parabola
$y^{2}=4 a x $
$y^{2}=4 x$
intersection points of both curves are
$M \left(\frac{3}{2}, \sqrt{6}\right), N \left(\frac{3}{2},-\sqrt{6}\right)$
Let the orthocentre be $( h , 0)$.
$\therefore \left(\frac{\sqrt{6}-0}{h-\frac{3}{2}}\right)\left(\frac{0-(-\sqrt{6})}{\frac{3}{2}-(-1)}\right)=-1$
$\Rightarrow \frac{6}{\left(h-\frac{3}{2}\right)\left(\frac{5}{2}\right)}=-1$
$\Rightarrow 24=-10 h+15$
$\Rightarrow h =-\frac{9}{10}$
$\therefore $ orthocentre $\left(-\frac{9}{10}, 0\right)$