Q.
PARAGRAPH 2
Let $p, q$ be integers and let $\alpha, \beta$ be the roots of the equation, $x^{2}-x-1=0$, where $\alpha \neq \beta$. For $n=0,1,2, \ldots$, let $a_{n}=$ $p \alpha^{n}+q \beta^{n}$
FACT : If $a$ and $b$ are rational numbers and $a+b \sqrt{5}=0$, then $a=0=b$.
If $a_{4}=28$, then $p+2 q=$
Solution: