Q.
PARAGRAPH 1
Let $O$ be the origin, and $\overrightarrow{O X}, \overrightarrow{O Y}, \overrightarrow{O Z}$ be three unit vectors in the directions of the sides $\overrightarrow{Q R}, \overrightarrow{R P}, \overrightarrow{P Q}$ respectively, of a triangle $PQR$
If the triangle $P Q R$ varies, then the minimum value of
$\cos (P+Q)+\cos (Q+R)+\cos (R+P)$is
Solution: