Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Oxidising power of chlorine in aqueous solution can be determined by the parameters indicated below
$\frac{1}{2}\left(C l\right)_{2}\left(g\right)\overset{\frac{1}{2} \Delta _{d i s s^{H ^\circ }}^{ \, }}{ \rightarrow }Cl\left(g\right)\overset{\Delta _{E A \left( \, \right)^{H ^\circ }}^{ \, }}{ \rightarrow }\left(C l\right)^{-}\left(g\right)\overset{\Delta _{h y d \left( \, \right)^{H ^\circ }}^{ \, }}{ \rightarrow }\left(C l\right)^{-}\left(\right.aq\left.\right)$
The energy involved in the conversion of $\frac{1}{2}Cl_{2}\left(\right.g\left.\right)$ to $\left(C l\right)^{-}\left(\right.aq\left.\right)$ (Using the data)
$\Delta _{d i s s^{H ^\circ } C l_{2}}^{ \, }=240 \, kJ \, mol^{- 1}$
$\Delta _{E A^{H ^\circ } C l_{ \, }}^{ \, }=-349 \, kJ \, mol^{- 1}$
$\Delta _{h y d \, ^{H ^\circ }}^{ \, }Cl=-381 \, kJ \, mol^{- 1}$ will be

NTA AbhyasNTA Abhyas 2020

Solution:

$\frac{1}{2}Cl_{2}\left(\right.g\left.\right) \rightarrow Cl^{-}\left(\right.aq\left.\right)$
$\Delta H=\frac{1}{2}\Delta H_{d i s s}\left(C l_{2}\right)+\Delta H_{E A} \, Cl+\Delta H_{h y d}\left(\right.Cl^{-}\left.\right)$
$=\frac{240}{2}-349-381$
$=-610 \, kJ \, mol^{- 1}$