Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
On the interval [0, 1], the function x25(1 - x)75 takes its maximum value at the point
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. On the interval $[0, 1]$, the function $x^{25}(1 - x)^{75}$ takes its maximum value at the point
VITEEE
VITEEE 2015
A
$0$
B
$ \frac{1}{4}$
C
$ \frac{1}{2}$
D
$ \frac{1}{3}$
Solution:
Let $f\left(x\right) = x^{25}\left(1 - x\right)^{75}, x \in \left[0, 1\right]$
$\Rightarrow f '\left(x\right) = 25x^{24} \left(1 - x\right)^{75} - 75x^{25} \left(1 - x\right)^{74}$
$= 25x^{24} \left(1 - x\right)^{74} \left(1 - x\right) - 3x$
$= 25 x^{24} \left(1 - x\right)^{74} \left(1 - 4x\right)$
We can see that $f '\left(x\right)$ is positive for $x <\frac{1}{4}$
and $f '\left(x\right)$ is negative for $x > \frac{1}{4}$.
Hence, $f \left(x\right)$ attains maximum at $x = \frac{1}{4}.$