Q.
On the complex plane, the parallelogram formed by the points $0, z, \frac{1}{z}$ and $z+\frac{1}{z}$ has area $\frac{35}{37}$. If the real part of $z$ is positive, let $d$ be the smallest possible value of $\left|z+\frac{1}{z}\right|$. Compute $\left[d^2\right]$.
[Note: [k] denotes the greatest integer function less than or equal to $k$.]
Complex Numbers and Quadratic Equations
Solution: