Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Number of ways of forming a committee of $6$ members out of $5$ Indians, $5$ Americans and $5$ Australians such that there will be atleast one member from each country in the committee is

AP EAMCETAP EAMCET 2019

Solution:

Required cases are as follow:
Indians Americans Australians
1 1 4
1 2 3
1 3 2
1 4 1
2 1 3
2 2 2
2 3 1
3 1 2
3 2 1
4 1 1

$\therefore $ Required number of committee
$={ }^{5} C_{1} \times{ }^{5} C_{1} \times{ }^{5} C_{4}+{ }^{5} C_{1} \times{ }^{5} C_{2} \times{ }^{5} C_{3}+{ }^{5} C_{1} \times{ }^{5} C_{3} $
$ \times{ }^{5} C_{2} $
$+{ }^{5} C_{1} \times{ }^{5} C_{4} \times{ }^{5} C_{1}+{ }^{5} C_{2} \times{ }^{5} C_{1} \times{ }^{5} C_{3}+{ }^{5} C_{2} \times{ }^{5} C_{2} $
$ \times{ }^{5} C_{2}+{ }^{5} C_{2} \times{ }^{5} C_{3} \times{ }^{5} C_{1}+{ }^{5} C_{3} \times{ }^{5} C_{1} \times{ }^{5} C_{2}+{ }^{5} C_{3} $
$ \times{ }^{5} C_{2} \times{ }^{5} C_{1}+{ }^{5} C_{4} \times{ }^{5} C_{1} \times{ }^{5} C_{1} $
$= 5 \times 5 \times 5+5 \times 10 \times 10+5 \times 10 \times 10+5 \times 5 \times 5 $
$+10 \times 5 \times 10+10 \times 10 \times 10+10 \times 10 \times 5+10 \times 5$
$ \times 10+10 \times 10 \times 5+5 \times 5 \times 5 $
$= 125+500+500+125+500+1000+500+500$
$+500+125 $
$= 4375$