Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Number of critical points of the function $f(x)=(x-2)^{\frac{2}{3}}(2 x+1)$ is equal to

Application of Derivatives

Solution:

Slaodsc We have $f(x)=(x-2)^{\frac{2}{3}}(2 x+1)$
$\therefore f ^{\prime}( x )=2( x -2)^{\frac{2}{3}}+\frac{2}{3}(2 x +1)( x -2)^{\frac{-1}{3}}=\frac{2(3( x -2)+2 x +1)}{3( x -2)^{\frac{1}{3}}}=\frac{2(5 x -5)}{3( x -2)^{\frac{1}{3}}}=\frac{10( x -1)}{3( x -2)^{\frac{1}{3}}}$
As domain of $f$ is $R$, so $x =1$ and $x =2$ are two critical points of $f ( x )$.