Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Number of complex numbers satisfying $|z|=1$ and $\left|\frac{z}{\bar{z}}+\frac{\bar{z}}{z}\right|=1$, is

Complex Numbers and Quadratic Equations

Solution:

$|z|=1 \Rightarrow z=\cos \theta+i \sin \theta$ for some $\theta \in[0,2 \pi)$
Now, $|z|=1 \Rightarrow|z|^2=1 \Rightarrow z \bar{z}=1$.
Thus, $\frac{z}{\bar{z}}+\frac{\bar{z}}{z}=z^2+\frac{1}{z^2}$
$=(\cos \theta+i \sin \theta)^2+(\cos \theta-i \sin \theta)^2$
$=2\left(\cos ^2 \theta+i^2 \sin ^2 \theta\right)=2(\cos 2 \theta)$
image
$\therefore \left|\frac{z}{\bar{z}}+\frac{\bar{z}}{z}\right|=1$ $\Rightarrow|\cos 2 \theta|=\frac{1}{2} $
$\Rightarrow \cos 2 \theta= \pm 1 / 2 $
$\Rightarrow 2 \theta=\pi / 3,2 \pi / 3,4 \pi / 3,5 \pi / 3,7 \pi / 3,8 \pi / 3,10 \pi / 3,11 \pi / 3$
$\Rightarrow \theta=\pi / 6, \pi / 3,2 \pi / 3.5 \pi / 6,7 \pi / 6,4 \pi / 3,5 \pi / 3,11 \pi / 6$
Hence, there are 8 values of $z$