Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Chemistry
n moles of helium gas are placed in a vessel of volume V liter at T K. If V1 is ideal volume of Helium, then diameter of He - atom is
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. $n$ moles of helium gas are placed in a vessel of volume $V$ liter at $T K$. If $V_{1}$ is ideal volume of Helium, then diameter of $He$ - atom is
States of Matter
A
$\frac{3}{2}\left(\frac{V_{1}}{\pi N_{ A } n}\right)^{1 / 3}$
B
$\frac{3}{2}\left[\frac{\left(V-V_{1}\right)}{\pi N_{ A } n}\right]^{1 / 3}$
C
$\left[\frac{6\left(V-V_{1}\right)}{\pi N_{ A } n}\right]^{1 / 3}$
D
$\left[\frac{6 V_{1}}{\pi N_{ A } n}\right]^{1 / 3}$
Solution:
Volume of $n$ moles of $He$ atoms $=V-V_{1}$
$\Rightarrow $ Volume of 1 atom of $He =\frac{\left(V-V_{1}\right)}{N_{ A }{n}}$
$\Rightarrow \frac{4}{3} \pi r^{3}=\frac{V-V_{1}}{N_{ A }{n}}$
$\Rightarrow r=\left\{\frac{3}{4 \pi}=\left(\frac{V-V_{1}}{N_{ A } n}\right)\right\}^{1 / 3} $
$\Rightarrow 2 r=\left\{\frac{2^{3} \times 3}{4 \pi}\left(\frac{V-V_{1}}{N_{ A } n}\right)\right\}^{1 / 3}$
$\Rightarrow $ So diameter $=\left\{\frac{6\left(V-V_{1}\right)}{\pi N_{ A } n}\right\}^{1 / 3}$