Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $n$ moles of helium gas are placed in a vessel of volume $V$ liter at $T K$. If $V_{1}$ is ideal volume of Helium, then diameter of $He$ - atom is

States of Matter

Solution:

Volume of $n$ moles of $He$ atoms $=V-V_{1}$

$\Rightarrow $ Volume of 1 atom of $He =\frac{\left(V-V_{1}\right)}{N_{ A }{n}}$

$\Rightarrow \frac{4}{3} \pi r^{3}=\frac{V-V_{1}}{N_{ A }{n}}$

$\Rightarrow r=\left\{\frac{3}{4 \pi}=\left(\frac{V-V_{1}}{N_{ A } n}\right)\right\}^{1 / 3} $

$\Rightarrow 2 r=\left\{\frac{2^{3} \times 3}{4 \pi}\left(\frac{V-V_{1}}{N_{ A } n}\right)\right\}^{1 / 3}$

$\Rightarrow $ So diameter $=\left\{\frac{6\left(V-V_{1}\right)}{\pi N_{ A } n}\right\}^{1 / 3}$