Thank you for reporting, we will resolve it shortly
Q.
Molarity equation of a mixture of solutions of same substance is given by
Some Basic Concepts of Chemistry
Solution:
Molarity, $M =$ number of moles/volume of solution
$M=\frac{n}{V}$
for mixture of solutios
$n _{1}+ n _{2}+ n _{3}+\ldots= M _{1} V _{1}+ M _{2} V _{2}+ M _{3} V _{3}+\ldots$
$\left( n _{1}+ n _{2}+ n _{3}+\ldots\right) \times \frac{\left( V _{1}+ V _{2}+ V _{3}+\ldots\right)}{\left( V _{1}+ V _{2}+ V _{3}+\ldots\right)}= M _{1} V _{1}+ M _{2} V _{2}+ M _{3} V _{3}+\ldots$
total number of moles in the mixture $=n_{ T }$, total volume $=V_{ T }$
final molarity $= M _{ T }= M$
$\frac{ n _{ T }}{ V _{ T }} \times\left( V _{1}+ V _{2}+ V _{3}+\ldots\right)= M _{1} V _{1}+ M _{2} V _{2}+ M _{3} V _{3}+\ldots$
$M _{ T } \times\left( V _{1}+ V _{2}+ V _{3}+\ldots\right)= M _{1} V _{1}+ M _{2} V _{2}+ M _{3} V _{3}+\ldots$
or $M \times\left( V _{1}+ V _{2}+ V _{3}+\ldots\right)= M _{1} V _{1}+ M _{2} V _{2}+ M _{3} V _{3}+\ldots$