Q.
Match the quadratic equations given in Column I with their roots in Column II and choose the correct option from the codes given below.
Column I
Column II
A
$\sqrt{2} x^2+x+\sqrt{2}=0$
1
$x=\frac{\sqrt{2} \pm i \sqrt{34}}{2 \sqrt{3}}$
B
$\sqrt{3} x^2-\sqrt{2} x+3 \sqrt{3}=0$
2
$x=\frac{-1 \pm i \sqrt{7}}{2 \sqrt{2}}$
C
$x^2+x+\frac{1}{\sqrt{2}}=0$
3
$\frac{-1 \pm i \sqrt{7}}{2 \sqrt{2}}$
D
$x^2+\frac{x}{\sqrt{2}}+1=0$
4
$\frac{-1 \pm i \sqrt{2 \sqrt{2}-1}}{2}$
Column I | Column II | ||
---|---|---|---|
A | $\sqrt{2} x^2+x+\sqrt{2}=0$ | 1 | $x=\frac{\sqrt{2} \pm i \sqrt{34}}{2 \sqrt{3}}$ |
B | $\sqrt{3} x^2-\sqrt{2} x+3 \sqrt{3}=0$ | 2 | $x=\frac{-1 \pm i \sqrt{7}}{2 \sqrt{2}}$ |
C | $x^2+x+\frac{1}{\sqrt{2}}=0$ | 3 | $\frac{-1 \pm i \sqrt{7}}{2 \sqrt{2}}$ |
D | $x^2+\frac{x}{\sqrt{2}}+1=0$ | 4 | $\frac{-1 \pm i \sqrt{2 \sqrt{2}-1}}{2}$ |
Complex Numbers and Quadratic Equations
Solution: