Q.
Match the functions of List-I with their nature in List-II and choose the correct option.
List I
List I
(A)
$f: R \rightarrow R$ defined by $f(x)=\cos (112 \,x-37)$
(I)
Injection but not surjection
(B)
$f: A \rightarrow B$ defined by $f(x)=x \mid x$ when $A=[-2,2]$ and $B=[-4,4]$
(II)
Surjection but not injection
(C)
$f: R \rightarrow R$ defined by $f(x)=(x-2)(x-3)(x-5)$
(III)
Bijection
(D)
$f: N \rightarrow N$ defined by $f(n)=n+1$
(IV)
Neither injection nor surjection
(V)
Composite function
Then, the correct match is
List I | List I | ||
---|---|---|---|
(A) | $f: R \rightarrow R$ defined by $f(x)=\cos (112 \,x-37)$ | (I) | Injection but not surjection |
(B) | $f: A \rightarrow B$ defined by $f(x)=x \mid x$ when $A=[-2,2]$ and $B=[-4,4]$ | (II) | Surjection but not injection |
(C) | $f: R \rightarrow R$ defined by $f(x)=(x-2)(x-3)(x-5)$ | (III) | Bijection |
(D) | $f: N \rightarrow N$ defined by $f(n)=n+1$ | (IV) | Neither injection nor surjection |
(V) | Composite function |
TS EAMCET 2019
Solution: