Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Match the functions of List-I with their nature in List-II and choose the correct option.
List I List I
(A) $f: R \rightarrow R$ defined by $f(x)=\cos (112 \,x-37)$ (I) Injection but not surjection
(B) $f: A \rightarrow B$ defined by $f(x)=x \mid x$ when $A=[-2,2]$ and $B=[-4,4]$ (II) Surjection but not injection
(C) $f: R \rightarrow R$ defined by $f(x)=(x-2)(x-3)(x-5)$ (III) Bijection
(D) $f: N \rightarrow N$ defined by $f(n)=n+1$ (IV) Neither injection nor surjection
(V) Composite function

Then, the correct match is

TS EAMCET 2019

Solution:

$(A) f: R \rightarrow R$
$f(x)=\cos (112 x-37)$
$f(x)$ is periodic function.
$\therefore $ It is not injective.
Range of $f(x)$ is $[-1,1]$
$\therefore $ It is also not surjective.
$\therefore A \rightarrow IV$
$ (B) f: A \rightarrow B, A \in[-2,2]$ and $ B \in[-4,4] $
$f(x)=x|x| $
$f(x)=\begin{cases}-x^{2} & -2 \leq x<0 \\ x^{2} & 0 \leq x \leq 2\end{cases}.$
Clearly $f(x)$ is bijective function.
$\therefore B \rightarrow III$
$(C) f: R \rightarrow R$
$f(x)=(x-2)(x-3)(x-5) $
$f(2)=f(3)=f(5)=0$
$\therefore $ It is not injective.
Range of $f(x)=R$
$\therefore $ It is surjective.
$\therefore C \rightarrow II$
$(D) f: N \rightarrow N$
$f(x)=n+1$
Clearly it is injective.
Range of $f(x)=\{2,3,4, \ldots\}$
Range $\neq$ Codomain
$\therefore $ It is not surjective.
$\therefore D \rightarrow I$