Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Match the following:
P If $x, y \in R^{+}$satisfy $\log _8 x+\log _4 y^2=5$ and $\log _8 y+\log _4 x^2=7$ then the value of $\frac{x^2+y^2}{2080}=$ 1 6
Q In $\triangle ABC$ A, B, C are in A.P. and sides $a , b$ and $c$ are in G.P. then $a^2(b-c)+b^2(c-a)+c^2(a-b)=$ 2 3
R If $a, b, c$ are three positive real numbers then the minimum value of $\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}$ is 3 0
S In $\triangle ABC ,( a + b + c )( b + c - a )=\lambda bc$ where $\lambda \in I$, then greatest value of $\lambda$ is 4 2

Trigonometric Functions

Solution:

Correct answer is (b) P =4, Q= 3, R= 1,S= 2