Q.
Match the following:
P
If $x, y \in R^{+}$satisfy $\log _8 x+\log _4 y^2=5$ and $\log _8 y+\log _4 x^2=7$ then the value of $\frac{x^2+y^2}{2080}=$
1
6
Q
In $\triangle ABC$ A, B, C are in A.P. and sides $a , b$ and $c$ are in G.P. then $a^2(b-c)+b^2(c-a)+c^2(a-b)=$
2
3
R
If $a, b, c$ are three positive real numbers then the minimum value of $\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}$ is
3
0
S
In $\triangle ABC ,( a + b + c )( b + c - a )=\lambda bc$ where $\lambda \in I$, then greatest value of $\lambda$ is
4
2
P | If $x, y \in R^{+}$satisfy $\log _8 x+\log _4 y^2=5$ and $\log _8 y+\log _4 x^2=7$ then the value of $\frac{x^2+y^2}{2080}=$ | 1 | 6 |
Q | In $\triangle ABC$ A, B, C are in A.P. and sides $a , b$ and $c$ are in G.P. then $a^2(b-c)+b^2(c-a)+c^2(a-b)=$ | 2 | 3 |
R | If $a, b, c$ are three positive real numbers then the minimum value of $\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}$ is | 3 | 0 |
S | In $\triangle ABC ,( a + b + c )( b + c - a )=\lambda bc$ where $\lambda \in I$, then greatest value of $\lambda$ is | 4 | 2 |
Trigonometric Functions
Solution: