Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Match the following:
List I List II
A Let $P ( x )$ be a cubic polynomial with zeroes $\alpha, \beta, \gamma$, if $\frac{ P \left(\frac{1}{2}\right)+ P \left(-\frac{1}{2}\right)}{ P (0)}=100 \text { then } \sqrt{\frac{1}{\alpha \beta}+\frac{1}{\beta \gamma}+\frac{1}{\gamma \alpha}}=$ 1 14
B The root of the equation $x^2+2(a-3) x+9=0$ lie between -6 and 1 and $2, h_1$, $h _2, \ldots . . h _{20},[ a ]$ are in H.P. and $2, a _1, a _2, \ldots . a _{20}$, [a] are in A.P. where [a] denotes the integral part of $a$, then $a_3 h_{18}$ is equal to 2 6
C If the sum of all possible values of $x \in(0,2 \pi)$ satisfying the equation 2 $\cos x \operatorname{cosec} x-4 \cos x-\operatorname{cosec} x=-2$ is equal to $k \pi / 2(k \in N)$, then the value of $k$ is 3 2
D If $P \left( t ^2, 2 t \right), t \in[0,2]$ is an arbitrary point on parabola $y ^2=4 x$. $Q$ is foot of perpendicular from focus $S$ on the tangent at $P$, then maximum area of triangle 4 5

Conic Sections

Solution:

Correct answer is (a) P= 1 ,Q= 3 ,R= 2 ,S= 4