Q.
Match the following integrals in column I with their corresponding values in column II and choose the correct option from the codes given below.
Column I
Column II
A
$\int e^{2 x+3} d x$
1
$e^{\tan ^{-1} x}+C$
B
$\int \frac{x}{e^{x^2}} d x$
2
$\log \left|e^x+e^{-x}\right|+C$
C
$\int \frac{e^{\tan ^{-1} x}}{1+x^2} d x$
3
$\frac{1}{2} e^{(2 x+3)}+C$
D
$\int \frac{e^{2 x}-1}{e^{2 x}+1} d x$
4
$-\frac{1}{2} e^{-\left(x^2\right)}+C$
Column I | Column II | ||
---|---|---|---|
A | $\int e^{2 x+3} d x$ | 1 | $e^{\tan ^{-1} x}+C$ |
B | $\int \frac{x}{e^{x^2}} d x$ | 2 | $\log \left|e^x+e^{-x}\right|+C$ |
C | $\int \frac{e^{\tan ^{-1} x}}{1+x^2} d x$ | 3 | $\frac{1}{2} e^{(2 x+3)}+C$ |
D | $\int \frac{e^{2 x}-1}{e^{2 x}+1} d x$ | 4 | $-\frac{1}{2} e^{-\left(x^2\right)}+C$ |
Integrals
Solution: