Q.
Match the following.
Column I
Column II
(i)
$tan^{-1} \left(\frac{\sqrt{1+x^{2} }+ \sqrt{1-x^{2} }}{\sqrt{1+x^{2} }-\sqrt{1-x^{2} }}\right) =$
(p)
$tan^{-1} \frac{4}{3} - x$
(ii)
$cos^{-1} \left(\frac{3}{5}cos\,x + \frac{4}{5} sin \,x\right)$, where $x \in \left(-\frac{3\pi}{4}, \frac{\pi}{4}\right)$ is equal to
(q)
$\sqrt{\frac{1+x^{2}}{2+x^{2}}}$
(iii)
$cos^{-1} \left(\frac{\sqrt{1+sin\,x} + \sqrt{1-sin\,x}}{\sqrt{1+sin\,x} - \sqrt{1-sin\,x}}\right)$, where $x \in \left(0, \frac{\pi}{4}\right)$ is equal to
(r)
$\frac{\pi}{4}+\frac{1}{2}cos^{-1}\,x^{2}$
(iv)
$cos\left(tan^{-1}\left(sin\left(cot^{-1}x\right)\right)\right) =$
(s)
$\frac{x}{2}$
| Column I | Column II | ||
|---|---|---|---|
| (i) | $tan^{-1} \left(\frac{\sqrt{1+x^{2} }+ \sqrt{1-x^{2} }}{\sqrt{1+x^{2} }-\sqrt{1-x^{2} }}\right) =$ | (p) | $tan^{-1} \frac{4}{3} - x$ |
| (ii) | $cos^{-1} \left(\frac{3}{5}cos\,x + \frac{4}{5} sin \,x\right)$, where $x \in \left(-\frac{3\pi}{4}, \frac{\pi}{4}\right)$ is equal to | (q) | $\sqrt{\frac{1+x^{2}}{2+x^{2}}}$ |
| (iii) | $cos^{-1} \left(\frac{\sqrt{1+sin\,x} + \sqrt{1-sin\,x}}{\sqrt{1+sin\,x} - \sqrt{1-sin\,x}}\right)$, where $x \in \left(0, \frac{\pi}{4}\right)$ is equal to | (r) | $\frac{\pi}{4}+\frac{1}{2}cos^{-1}\,x^{2}$ |
| (iv) | $cos\left(tan^{-1}\left(sin\left(cot^{-1}x\right)\right)\right) =$ | (s) | $\frac{x}{2}$ |
Inverse Trigonometric Functions
Solution: