Q.
Match the following.
Column I
Column II
(i)
$\left(1-2x\right)^{5}=$
(p)
$\frac{x^{5}}{243} -\frac{5x^{3}}{81}+\frac{10x}{27}-\frac{10}{9x}$
$+\frac{5}{3x^{3}}-\frac{1}{x^{5}}$
(ii)
$\left(2x-3\right)^{6}=$
(q)
$x^{6}+6x^{4}+15x^{2}+20$
$+\frac{15}{x^{2}}+\frac{6}{x^{4}}+\frac{1}{x^{6}}$
(iii)
$\left(\frac{x}{3}-\frac{1}{x}\right)^{5} =$
(r)
$1 - 10x + 40x^{2 }- 80x^{3}$
$+ 80x^{4 }- 32x^{5}$
(iv)
$\left(x-\frac{1}{x}\right)^{6} =$
(s)
$64x^{6} - 576x^{5} + 2160x^{4} - 4320x^{3}$
$+ 4860x^{2} - 2916x + 729$
Column I | Column II | ||
---|---|---|---|
(i) | $\left(1-2x\right)^{5}=$ | (p) | $\frac{x^{5}}{243} -\frac{5x^{3}}{81}+\frac{10x}{27}-\frac{10}{9x}$ $+\frac{5}{3x^{3}}-\frac{1}{x^{5}}$ |
(ii) | $\left(2x-3\right)^{6}=$ | (q) | $x^{6}+6x^{4}+15x^{2}+20$ $+\frac{15}{x^{2}}+\frac{6}{x^{4}}+\frac{1}{x^{6}}$ |
(iii) | $\left(\frac{x}{3}-\frac{1}{x}\right)^{5} =$ | (r) | $1 - 10x + 40x^{2 }- 80x^{3}$ $+ 80x^{4 }- 32x^{5}$ |
(iv) | $\left(x-\frac{1}{x}\right)^{6} =$ | (s) | $64x^{6} - 576x^{5} + 2160x^{4} - 4320x^{3}$ $+ 4860x^{2} - 2916x + 729$ |
Binomial Theorem
Solution: