Q.
Match the following :
Column I
Column II
A
the function $\frac{\sin x \cos 3 x}{\sin 3 x \cos x}$ can take the values
P
4
B
$\left(\sin 12^{\circ}\right)\left(\sin 48^{\circ}\right)\left(\sin 54^{\circ}\right.$ is equal to
Q
$\frac{1}{8}$
C
In an acute angled $\triangle ABC$ the least values of $\Sigma \sec A$
R
6
D
$\left(\sqrt{3} \operatorname{cosec} 20^{\circ}-\sec 20^{\circ}\right)$ is equal to
S
0
T
2
Column I | Column II | ||
---|---|---|---|
A | the function $\frac{\sin x \cos 3 x}{\sin 3 x \cos x}$ can take the values | P | 4 |
B | $\left(\sin 12^{\circ}\right)\left(\sin 48^{\circ}\right)\left(\sin 54^{\circ}\right.$ is equal to | Q | $\frac{1}{8}$ |
C | In an acute angled $\triangle ABC$ the least values of $\Sigma \sec A$ | R | 6 |
D | $\left(\sqrt{3} \operatorname{cosec} 20^{\circ}-\sec 20^{\circ}\right)$ is equal to | S | 0 |
T | 2 |
Trigonometric Functions
Solution: