Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Match the Column I with Column II.
Column I (Units) Column II (Dimensional formulae)
(A) $Pa\,s$ (p) $[M^0L^2T^{-2}K^{-1}]$
(B) $N\,m\,K^{-1}$ (q) $[MLT^{-3}K^{-1}]$
(C) $J\,kg^{-1}\,K^{-1}$ (r) $[ML^{-1}T^{-1}]$
(D) $W\,m^{-1}\,K^{-1}$ (s) $[ML^{2}T^{-2}K^{-1}]$

Physical World, Units and Measurements

Solution:

$\left(A\right)\,Pa\,s=\left[ML^{-1}T^{-2}\right]\,\left[T\right]=\left[ML^{-1}T^{-1}\right]$
$A-r$
$\left(B\right)\,N\,m\,K^{-1}=\frac{\left[MLT^{-2}\right]\left[L\right]}{\left[K\right]}=\left[ML^{2}T^{-2}K^{-1}\right]$
$B-s$
$\left(C\right)\,J\,kg^{-1}\,K^{-1}=\frac{\left[ML^{2}T^{-2}\right]}{\left[M\right]\left[K\right]}=\left[M^{0}L^{2}T^{-2}K^{-1}\right]$
$C-p$
$\left(D\right)\,W\,m^{-1}\,K^{-1}=\frac{\left[ML^{2}T^{-3}\right]}{\left[L\right]\left[K\right]}=\left[MLT^{-3}K^{-1}\right]$
$D-p$