Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Match the Column I (quantity) with Column II (dimension) and select the correct answer from the codes given below.
Column I Column II
A Thermal resistance 1 $\left[ MT ^{-3} K ^{-4}\right]$
B Stefan's constant 2 $\left[ M ^{-1} L ^{-2} T ^{3} K \right]$
C Wien's constant 3 $\left[ ML ^{2} T ^{-3}\right]$
D Heat current 4 $[ LK ]$

Thermal Properties of Matter

Solution:

A. Thermal resistance $=\frac{L}{K A}$
Dimensions $=\frac{[ L ]}{\left[\frac{ ML ^{2} T ^{-2}}{ T } \times \frac{ L }{ L ^{2} K }\right] L ^{2}}$
$=\frac{[ L ]}{\left[ MLT ^{-3} K ^{-1}\right] L ^{2}}$
$=\left[ M ^{-1} L ^{-2} T ^{3} K \right]$
B. Stefan-Boltzmann law,
Heat radiated per unit time by body
$=\frac{\Delta Q}{\Delta t}=e \sigma A T^{4}$
$\Rightarrow \sigma=\frac{\Delta Q / \Delta t}{e A T^{4}}$
$e=$ emissivity (dimensionless constant)
Dimensions of $\sigma$ (Stefan-Boltzmann constant)
$=\frac{\left[ ML ^{2} T ^{-2}\right]}{\left[ TL ^{2} K ^{4}\right]}=\left[ MT ^{-3} K ^{-4}\right]$
C. From Wien's displacement law, $\lambda_{m} T=$ constant
Here, 'constant' is called Wien's constant, its value is $2.9 \times 10^{-3} m - K$ and dimensions [LK].
D. Heat current, $H=\frac{\Delta Q}{\Delta t}=\frac{K A\left(T_{h}-T_{l}\right)}{L}$
Dimensions of $H$ is $\left[ ML ^{2} T ^{-3}\right]$.
Hence, $A \rightarrow 2, B \rightarrow 1, C \rightarrow 4$ and $D \rightarrow 3$.