Let the position vectors of $A, B, C, D, M$ and $N$ are $a , b , c , d , m$ and $n $
Since, $M$ and $N$ are the mid-points of $AC$ and $BD$.
$m =\frac{ a + c }{2}, n =\frac{ b + d }{2}$
Now, $ A B+A D+C B+C D $
$=(b-a)+(d-a)+(b-c)+(d-c) $
$=2(b+d)-2(a+c)$
$=2 \times 2 n-2 \times 2 m$
$=4(n-m)=4 \,MN $