Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $\log _3\left(\frac{\log _3 3^{3^{3^3}}}{\log _{3^3} 3^{3^3}}\right)$ has the value equal to

Continuity and Differentiability

Solution:

$\log _3\left(\frac{3^{3^3}}{3^2}\right) \quad=\log _3\left(\frac{3^{27}}{3^2}\right) \quad\left[\log _{3^3} 3^{3^3}=\frac{\log _3 3^{3^3}}{\log _3 3^3}=\frac{3^3}{3}=3^2\right]$
$=\log _3\left(3^{25}\right)=25$