Q.
List I
List II
P
Let $z , \omega, \alpha$ be complex numbers such that $| z |=|\omega|=4$ and $\alpha=\frac{z-\bar{\omega}}{16+z \bar{\omega}}$, then $\operatorname{Re}(\alpha)$ is equal to
1
0
Q
If $x = p +i q$ is a complex number such that $x ^2=3+4 i$ and $x ^3=2+11 i$ where $i=\sqrt{-1}$, then $( p + q )$ is equal to
2
3
R
Number of complex numbers z satisfying the equation $\overline{ z }=i z ^2$, where $i=\sqrt{-1}$ is equal to
3
4
S
If $z \in C$ satisfies $| z +2-i|=5$ then the maximum value of $\frac{|3 z +9-7 i|}{4}$ is equal to
4
5
List I | List II | ||
---|---|---|---|
P | Let $z , \omega, \alpha$ be complex numbers such that $| z |=|\omega|=4$ and $\alpha=\frac{z-\bar{\omega}}{16+z \bar{\omega}}$, then $\operatorname{Re}(\alpha)$ is equal to | 1 | 0 |
Q | If $x = p +i q$ is a complex number such that $x ^2=3+4 i$ and $x ^3=2+11 i$ where $i=\sqrt{-1}$, then $( p + q )$ is equal to | 2 | 3 |
R | Number of complex numbers z satisfying the equation $\overline{ z }=i z ^2$, where $i=\sqrt{-1}$ is equal to | 3 | 4 |
S | If $z \in C$ satisfies $| z +2-i|=5$ then the maximum value of $\frac{|3 z +9-7 i|}{4}$ is equal to | 4 | 5 |
Complex Numbers and Quadratic Equations
Solution: