Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Line $L$ meets lines $L _1: \frac{ x }{1}=\frac{ y }{2}=\frac{ z }{3}$ and $L _2: \frac{ x -2}{2}=\frac{ y -1}{4}=\frac{ z -4}{5}$ orthogonally at points $P$ and Q. $(P Q)^2$ is D. DRs of line $L$ are $(a, b, c)\{a, b, c \in I\}$, then least value of $\frac{5 D}{3}+|a|+|b|+|c|$.

Vector Algebra

Solution:

PQ distance is shortest distance between $L _1$ and $L _2$.
S.D. $=\frac{|[2 \hat{i}+\hat{j}+4 \hat{k} \hat{i}+2 \hat{j}+3 \hat{k} 2 \hat{i}+4 \hat{j}+5 \hat{k}]|}{|(\hat{i}+2 \hat{j}+3 \hat{k}) \times(2 \hat{i}+4 \hat{j}+5 \hat{k})|}$
image
$=\frac{3}{|-2 \hat{i}+\hat{j}|}=\frac{3}{\sqrt{5}}$
or $( PQ )^2=\frac{9}{5} \Rightarrow 5 D =9$
DRs of line $L$ are proportional to $(-2,1,0)$.