Q. Line $L$ meets lines $L _1: \frac{ x }{1}=\frac{ y }{2}=\frac{ z }{3}$ and $L _2: \frac{ x -2}{2}=\frac{ y -1}{4}=\frac{ z -4}{5}$ orthogonally at points $P$ and Q. $(P Q)^2$ is D. DRs of line $L$ are $(a, b, c)\{a, b, c \in I\}$, then least value of $\frac{5 D}{3}+|a|+|b|+|c|$.
Vector Algebra
Solution: