Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
displaystyle limy →0 (√1+ √1+y4 -√2/y4)
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. $\displaystyle\lim_{y \to0} \frac{\sqrt{1+ \sqrt{1+y^{4}}} -\sqrt{2}}{y^{4}} $
JEE Main
JEE Main 2019
Limits and Derivatives
A
exists and equals $\frac{1}{4 \sqrt{2}}$
65%
B
does not exist
17%
C
exists and equals $\frac{1}{2 \sqrt{2}}$
12%
D
exists and equals $\frac{1}{2 \sqrt{2} ( \sqrt{2} + 1)}$
6%
Solution:
$\lim_{y \to0} \frac{\sqrt{1+\sqrt{1+y^{4}} } - \sqrt{2}}{y^{4}} =\lim_{y\to0} \frac{1+\sqrt{1+y^{4}} -2}{y^{4} \left(\sqrt{1+\sqrt{1+y^{4}} } + \sqrt{2}\right)} $
$ = \lim_{y\to0} \frac{\left(\sqrt{1+y^{4}} -1\right)\left(\sqrt{1+y^{4}}+1\right)}{y^{4} \left(\sqrt{1+\sqrt{1+y^{4}}} + \sqrt{2}\right)\left(\sqrt{1+y^{4}}+1\right)} $
$= \lim_{y\to0} \frac{1+y^{4}-1}{y^{4} \left(\sqrt{1+\sqrt{1+y^{4}}} + \sqrt{2}\right) \left(\sqrt{1+y^{4}} +1\right)} $
$ = \lim_{y\to0} \frac{1}{\left(\sqrt{1+\sqrt{1+y^{4}}} +\sqrt{2}\right)\left( \sqrt{1+y^{4}} +1\right)} = \frac{1}{4\sqrt{2}} $